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Abstract
We study the static and dynamic formation of entanglement in charge states of
a two double quantum dot array with two mobile electrons under the effect of
an external driving field. We include dissipation via contact with a phonon bath.
By using the density matrix formalism and an open quantum system approach,
we describe the dynamical behaviour of the charge distribution (polarization),
concurrence (measure of the degree of entanglement) and Bell state probabilities
(two qubit states with maximum entanglement) of such a system, including
the role of dot asymmetry and temperature effects. Our results show that it is
possible to obtain entangled states as well as a most probable Bell state, which
can be controlled by the driving field. We also evaluate how the entanglement
formation based on charge states deteriorates as the temperature or asymmetry
increases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a quantum mechanical property with no classical counterpart; it corresponds
to the joint state of two or more quantum systems and describes correlations between them
that are much stronger than any classical correlation [1]. It is an important source for quantum
computing and an essential element for quantum communication schemes (such as quantum
dense code, quantum teleportation and quantum cryptography [1, 2]). Therefore, there is
currently great interest in finding systems to implement and control both entangled states
(defined as non-separable superpositions of its component states [1, 2]) and the basic unit for
quantum computers named qubit.

There have been different proposals to produce entangled states, such as atomic
systems [1, 3], semiconductor quantum dots [4] and other schemes based on spins and
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Figure 1. Diagrams for: (a) the two double quantum dot cell (tunnelling allowed vertically only) in
the presence of driver cell with charge density nd

i in each QD. It is possible to encode two charge
qubits with the electron located in each double dot. (b) Definition of the Bell states |�±〉, |φ±〉 on
the two qubit basis and expressed in terms of linear combinations of charge distribution inside the
square cell.

cavities [1, 5, 6]. Among the systems proposed for qubit implementation, those based on
the charge degree of freedom (called charge qubits [7, 8]) and specifically constructed with
solid state systems such as double quantum dots (DQDs) [4, 7, 9, 10] are important candidates
because of scalability [6], making a natural connection with current microelectronics and
offering a good control of a single charge qubit [11]. In addition, arrays of interacting quantum
dots (QDs) have been proposed as elements for encoding, processing and transmitting logical
information and even for the physical realization of a quantum computer [12] based on quantum
and classical effects [13].

Here, we investigate entanglement formation in two charge qubits formed by a two double
quantum dot array (which can represent a basis for a ‘quantum register’), including the effect
of the environment and possible dot imperfections.

The basic unit of this system, or cell, has four quantum dots at the corners of a square
with two extra electrons. When we include the Coulomb interaction and tunnelling, the ground
state has two equally probable states with the electrons aligned on opposite corners. These
‘polarization’ states (+1 and −1, as defined below (equation (7)) and in [13]) are degenerate
and have been used to encode two bits of classical information [12, 13] and as a basis for
the charge qubits [7]. The degeneracy is broken by the effect of an externally controlled time-
dependent field, which can be thought of as a driver cell. This field produces the desired electric
potential on the array, allowing the control of charge in the states of the QD array, and possibly
of entanglement. Our scheme is based on recent experimental realization of a charge qubit
manipulated with time-dependent pulsed gate voltages or microwaves [10, 11].

We propose a cell where the electrons can tunnel only vertically between neighbour dots
(figure 1(a)). Thus, in effect, we have two DQDs coupled by Coulomb interactions representing
two charge qubits. The main purpose of the present paper is to explore the formation of
entanglement based on the charge distribution inside the two DQD cell, through the control
of the driver cell polarization.



Dynamical entanglement formation 9773

Because solid state devices are not free from fabrication imperfections, we also take into
account asymmetry effects in the cell behaviour when the energy level of one of the QDs is
changed by a certain amount. On the other hand, in ideal situations, quantum coherence must
be maintained during quantum computing processes; however the interaction of the qubits with
the environment inevitably disturbs the desired quantum evolution of that process, and the effect
of surrounding phonons is the major cause of decoherence in such qubit implementation [6, 16].
Therefore, we also include the coupling of the cell electrons to a bath of phonons in thermal
equilibrium.

Even though there are different ways to evaluate if a quantum system is entangled, many
authors [4, 17–19] have recently used Wootters’ concurrence for two qubits, which is applied
for pure and mixed ensembles, and its calculation is based on the density matrix of the
systems [20]. We use concurrence to characterize the degree of entanglement in our two DQD
system, in both coherent and decoherent or dissipative dynamics.

Besides charge distribution and entanglement, we evaluate the formation of Bell states
(states of two qubits with the maximum entanglement [1, 2, 20], figure 1(b)), due to their
importance in quantum information and communication applications.

For coherent dynamics, we study the system by solving the time evolution of the density
matrix for the two double dot cell taking into account a linear time-dependent driver cell
polarization, intracell Coulomb interactions and imperfection effects. Using a Markovian
master equation approach for the reduced density matrix of the system, we consider dissipation
effects via electron–phonon interactions in each dot. For both dynamical analyses, our results
show that entangled states and a specific most probable Bell state can be obtained in a controlled
electrical scheme.

2. Model

The two DQD cell in the presence of a driver cell is described by a Hubbard-type Hamiltonian
which includes intracell and intercell Coulomb repulsion as well as tunnelling inside the
cell [13, 21]:

HS =
∑

i

εi n̂i + t
∑

〈i j〉
(ĉ†

i ĉ j + ĉ†
j ĉi )+

∑

i> j

Vi j n̂i n̂ j +
∑

i, j

Wi j n̂
d
i (t)n̂ j (1)

where ĉ†
i (ĉi ) is the creation (annihilation) operator of electrons and n̂i is the number operator.

ε j is the on-site energy at the ith quantum dot in the DQD cell, where we can add asymmetry
effects by changing the energy level in a given QD by δ (a measure of the imperfections due
to different dot size or a change in the local environment). The electron tunnelling between
nearest-neighbour dots inside the cell is t , and it is allowed only vertically in our model.
Vi j = V/di j is the electrostatic interaction between electrons in dots i and j in the two DQD
cell, separated a distance di j , and Wi j is that between site j in the two DQD cell and site i in the
driver cell (which has a general time-dependent charge density n̂d

i (t)). As we have mentioned,
the driver cell is a controllable external potential applied on the charge qubits array produced
by means of manipulation of stationary or dynamic gate voltages applied in each QD of the
array. This is a coherent external electric energy which directly renormalizes on-site energy
on each dot. We base our driver model on recent experimental realizations of a single charge
qubit manipulated with time-dependent gate voltages [10, 11] (where coherence in the array
is demonstrated for up to 200 ns); on experimental settings of similar cell systems that use
gate voltages to produce only charge manipulation [14, 15] and also on theoretical studies that
consider coherent drivers [16].
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Notice that we assume spinless electrons and double occupancy is forbidden. Following
the notation of Lent et al [13] the distance between quantum dots is a, while the separation
between target and driver cells is c as it is shown in figure 1.

We consider the dissipative model introduced in [16, 22] which consists of a reservoir
(bath) of phonons represented by a set of quantum harmonic oscillators of frequency ωk , given
by HR =

∑

k

h̄ωk b̂†
k b̂k , where b̂†

k (b̂k) is the creation (annihilation) phonon operator. It also

includes the electron–phonon interaction in the form

VSR =
∑

k

∑

〈i, j〉
αki j ĉ

†
i ĉ j (b̂

†
k + b̂k) (2)

where we consider the coupling parameter αki j = Dgk(ωk) with D the coupling strength
constant and gk(ωk) ∝ ω

1/2
k for the deformation potential model [16, 22]. Thus, for the model

with dissipation the total Hamiltonian is given by H = HS + HR + VSR.
We assume the quantum dots to be as those defined in [16, 21] for which the intra-dot

Coulomb repulsion is V ≈ 1 meV, and this quantity is taken as the unit of energy in this paper.
For our particular model, the basis is given by the four charge distribution states in the two
DQD cell: |11〉 = |1001〉, |10〉 = |0101〉, |01〉 = |1010〉 and |00〉 = |0110〉, where |n1n2n3n4〉
represents one electron present (ni = 1) or absent (ni = 0) in the i th QD (see figure 1).
The states |10〉 and |01〉 correspond to charge distributed along the diagonals in the square
cell, and because of electrostatic interaction they have minimum energy and can be selected by
choosing a driver cell with an equivalent charge distribution. On the other hand, states |11〉 and
|00〉 are configurations with electrons along the square sides and correspond to excited states.
In that way, the four Bell states in the computational basis [1, 20] can be straightforwardly
related to our basis states as shown in figure 1(b), where it can be noticed that they are
associated with linear combinations of charge distribution states, both along the diagonals
(|�±〉 = (|01〉 ± |10〉)/√2) and along the sides of the DQD cell (|φ±〉 = (|00〉 ± |11〉)/√2).

For the stationary case we solve the eigenvalue problem HSφn = Enφn and study the
ground state properties. In this case, we assume a fixed driver charge configuration on sites
1 and 3 (nd

1 = nd
3 = 1 and nd

2 = nd
4 = 0) corresponding to polarization Pdriver = +1 (see

equation (7) below). For dynamical studies we consider a driver polarization that changes
linearly with time in two different switching schemes: in the first, it goes from Pdriver = +1
(charge on sites 1 and 3) to Pdriver = −1 (charge on sites 2 and 4) in a time τ , so that
Pdriver(t) = 1 − 2t/τ ; and in the second, from Pdriver = +1 to 0 in a switching time τ/2.
This corresponds to charge densities in the driver cell of nd

1 (t) = nd
3(t) = 1 − t/τ and

nd
2 (t) = nd

4 (t) = t/τ . In general, for coherent dynamics, the equation of motion for the
density matrix of the system (Liouville–von Neumann equation) is solved, while for dissipation
(only for the second driver polarization switching scheme) we solve the time evolution for the
reduced density matrix (RDM) elements defined through the Markov approximation for open
quantum systems. In the Schrödinger picture it is given by [16, 23]

ρ̇S(t)ss ′ = −iωss ′ρS(t)ss ′ +
∑

mn

R̃ss ′mnρS(t)mn . (3)

The first term on the right-hand side represents reversible (coherent) effects and depends
on transition frequencies of the system ωss ′ = (ES−ES′)/h̄ (Em are the cell eigenenergies), and
the second term describes relaxation processes (irreversible dynamics) where R̃ss ′mn is called
the relaxation tensor [23], given explicitly as

R̃ss ′mn =
⎧
⎨

⎩
δnm(1 − δms)W̃sm − δmsδns

∑

k �=s

W̃ks (s = s′)

−γss ′δmsδns ′ (s �= s′).
(4)
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Here, W̃nm are the transition rates from state |m〉 to |n〉, which can be expressed in terms
of bath and DQD cell properties as

W̃mn = 2π

h̄2
D2|g(ωmn)|2D(ωmn){|Smn|2n̄(ωmn)+ |Smn|2[1 + n̄(ωmn)]} (5)

where n̄(ω) is the mean phonon number with frequency ω (Bose–Einstein distribution),
D(ωmn) is the density of boson states (∼ω2 in the Debye model) [16, 22] and Smk are the matrix
elements of the electronic part of the cell interacting with the phonon reservoir, equation (2),
which can be interpreted as phonon-assisted tunnelling events. The charge states involved in
such transitions are given in terms of projectors as S = |01〉〈11|+|10〉〈11|+|01〉〈00|+|10〉〈00|.

γss ′ in equation (4) is called the non-adiabatic parameter whose real part contributes to
the time decay of the off-diagonal density matrix elements, and is directly responsible for
the loss of coherence. This parameter can be written in terms of the transition rates by
Re γss ′ = (

∑
k �=s W̃ks + ∑

k �=s W̃ks ′ )/2 [16]. Its imaginary part corresponds to an intrinsic
relaxation rate for each transition which we assume negligible.

From equation (5), one can notice that transition rates satisfy the detailed balanced
condition

W̃nm

W̃mn

= exp

(
− h̄ωnm

kBT

)
. (6)

The numerical solution of both stationary and dynamical equations are used to evaluate the
two DQD cell properties. The cell polarization is calculated as [21]

P = ζ1 + ζ3 − (ζ2 + ζ4)∑
i ζi

, (7)

where ζi is the charge density at QD i and is determined from the density matrix as the
expectation value of the number operator at each site, ζi = tr(ρSn̂i ). Notice that states of
charge distribution along the diagonals |01〉 and |10〉 correspond to polarization P = 1 and −1
respectively.

On the other hand, Wootters’s expression for concurrence [20] for a pure state of two qubits
is

C = |〈ψ|ψ̃〉| (8)

with |ψ̃〉 = (σy ⊗ σy)|ψ∗〉, where |ψ∗〉 is the complex conjugate of |ψ〉 and σy is the Pauli
matrix. For a general state (pure or mixtures), the concurrence for two qubits is also calculated
in terms of the density matrix ρS as

C = max{0, λ1 − λ2 − λ3 − λ4} (9)

where the λs are the square roots of the eigenvalues, in decreasing order, of the non-Hermitian
matrix ρSρ̃S = ρS(σy ⊗ σy)ρ

∗
S(σy ⊗ σy), where ρ∗

S denotes the complex conjugation of
ρS. Concurrence values go from 0 (no correlation between states) to 1 (maximum degree of
entanglement); Bell states have C = 1 [20] and each cell state (|11〉, |10〉, |01〉 and |00〉) has
null concurrence, C = 0.

3. Results and discussion

For the stationary study, we consider a constant driver polarization Pdriver = +1, and calculate
the ground state properties as a function of tunnelling coupling, t/V , as shown in figure 2. From
the energy spectrum (figure 2(a)) we can see that the presence of the driver cell removes the
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Figure 2. Ground state properties for the two DQD cell, as a function of tunnelling: (a) energy level
structure, (b) concurrence and (c) stationary Bell state probabilities.

degeneracy even for t/V = 0, and as tunnelling increases, it produces additional level splitting.
The ground state corresponds to a cell polarization Pcell

∼= +1 (not shown) induced by the
electrostatic driver effect, but increasing tunnelling reduces that value in agreement with results
presented in [16]. On the other hand, entanglement measured through concurrence (figure 2(b))
as a function of tunnelling goes from zero (no correlation between cell states) to a maximum
value (around 0.66) for a tunnelling amplitude tc/V = 0.063 and then decreases, approaching
zero for large values of tunnelling. This concurrence has contributions from different Bell
states, |�+〉 being the one with the largest probability (which corresponds to a symmetric
contribution of states with electrons along diagonals). The concurrence behaviour can be better
understood by studying the model in the Bell states basis.

For this ground state, which is a pure state, concurrence can be calculated from equation (8)
in terms of Bell state probabilities as C = |P�+ − P�− − Pφ+ + Pφ− | (where Pi is the probability
for Bell state i ). From figure 2(c) one can observe that, for small tunnelling, t/V ∼ 0, the cell
is mainly formed by the combination |01〉 ∼ (|�+〉 + |�−〉), which is not entangled and has
zero concurrence [20]. Next, there is a tunnelling regime 0 < t/V < tc/V which starts to
promote charge delocalization yielding a combination mainly formed by |01〉 and |10〉 states
(|�+〉 and |�−〉) and a small contribution of the |φ+〉 state. As the |01〉 state is preferred
because of the driver effect, the probability of |�+〉 increases to a larger value than that of |φ+〉
and also a decrease in the probability of |�−〉 is observed; thus concurrence tends to increase
its value as is pointed out in the previous expression. For t/V > tc/V , the two DQD cell
enters in a new regime where delocalization induced by tunnelling is stronger and promotes
equal population in each QD, producing a superposition of all cell states ∼ (|�+〉 + |φ+〉),
with a corresponding increasing of |φ+〉 probability that presents an adverse contribution for
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Figure 3. Coherent time evolution of the two DQD cell properties for two changing driver
polarization schemes: (i) Pdriver from +1 to −1 (presented with a dash–dot line) in a time τ = 4 ns
and (ii) from +1 to 0 in time ts = τ/2. (a) Polarization, (b) concurrence, (c) probabilities for Bell
states as a function of time. All cell properties are in dashed and solid lines. We notice that charge
densities in the driver cell let us control entangled state formation in the two DQD cell. Parameters:
V = 1 meV, tunnelling t/V = 0.03 and c = 2a.

concurrence. Then the concurrence decreases as the contribution of |φ+〉 tends to equal that of
|�+〉 in the large tunnelling regime.

For coherent dynamics studies (without thermal bath) we evaluate the effect of the driver
switching time in the dynamical entanglement formation (we use typical values for c = 2a,
t/V = 0.03 and τ = 4 ns [16]) for the symmetric case with all equal quantum dots (δ = 0).

For a driver polarization changing linearly from Pdriver = +1 to −1 in a switching time
τ , we can observe that the polarization of the two DQD cell (dashed line in figure 3(a))
evolves following that of the driver [16] (dash–dot line in figure 3(a)), changing the two DQD
polarization from Pcell ∼ 1 to ∼ −1. Concurrence, on the other hand, increases until it reaches
a maximum value at time ts ≈ τ/2 (dashed line in figure 3(b)), and for longer times decreases,
reaching an asymptotic value after the driver is completely switched off. We mainly obtain
the |�+〉 state but there is a small contribution from |�−〉, as is shown in the dashed lines in
figure 3(c), meaning that the cell is initially very close to the |01〉 ∼ |�+〉+|�−〉 state and at τ
it completely changes to the state near |10〉| ∼ |�+〉−|�−〉. As we obtain a local maximum of
concurrence at ts = τ/2, we propose to control the system in order to maintain that maximum
value by ‘turning off’ the driver polarization at that time ts (i.e., Pdriver goes now from +1 to
0 in a time ts) as presented also in figure 3. We observe stationary properties for polarization,
concurrence and Bell state probabilities respectively after the driver depolarizes (solid lines in
figures 3(a)–(c)), presenting small oscillations due to coherence. With this dynamical control
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Figure 4. Coherent time evolution of the two DQD cell properties for the entanglement controlled
scheme. Driver with polarization Pdriver from +1 to 0 in a time ts = τ/2 for different asymmetries
δ in quantum dot 1. (a) Polarization, (b) concurrence, (c) probabilities for Bell states as a function
of time. Notice that asymmetry deteriorates entanglement formation in the two DQD cell (same
parameters as in figure 3).

process we are able to generate and maintain one of the Bell states (|�+〉) with the largest
probability in our system from an almost uncorrelated initial state3.

In such a controlled scheme for entanglement and Bell state |�+〉 formation, we include
asymmetry effects, δ �= 0, by decreasing the on-site energy for QD 1 (meaning it has a larger
size). The effect of asymmetry on coherent dynamical properties is shown in figure 4. The
DQD cell polarization presents a ‘delay’ with respect to the δ = 0 case even for small values
of δ, and almost any change of the polarization is prevented as δ increases [16], as we can see
from figure 4(a). Concurrence also presents a delay (figure 4(b)). The system shows a decrease
in correlation even for small imperfections, decreasing the concurrence as δ increases. This
behaviour is a consequence of cell tendency to trap the electron in site 1; thus the population of
states |10〉 and |00〉 is inhibited in the dynamics even with the driver effect of equally populating
each dot. This effect is also revealed in an increment of the Bell state |�−〉 probability and a
consequent slight decrease in that of |�+〉 (figure 4(c)), meaning that the cell tends to be mainly
near the |01〉 state.

In order to be in the condition of better entanglement formation and evaluate the effect
of the phonon environment, we study the case of driver depolarization at time ts = τ/2 and
symmetric dots in the array. In figures 5 and 6 we show results for the dissipative dynamics. We
evaluate the effects of temperature in polarization, concurrence and probabilities as a function

3 The initial condition is chosen as the ground state of the system at the given hopping t/V , for Pdriver = +1. This
yields a smooth behaviour at the start of the driver switching.
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Figure 5. Dissipative dynamics of the two DQD cell for different temperatures. Here T1 ∼ 1 K,
D2 = 0.05 and we assume symmetric dots. (a) Polarization, (b) concurrence as a function of time
(same parameters as in figure 3).

of time. We can observe in figure 5(a) that the cell polarization decreases as the temperature
increases, and for high temperature (T = 3T1 ≈ 3 K) it is quenched and even seems to ignore
the driver effect, in agreement with [16]; the asymptotic polarization value for each temperature
is the same (tends to 0) because of the ‘turning off’ of the driver. On the other hand, concurrence
(figure 5(b)) also decreases as the temperature increases. Notice that we obtain entanglement
and specifically the |�+〉 state (figure 6(a)) for low temperatures T ∼ 1 K, but it is possible to
completely lose correlation for larger temperatures.

As concurrence decreases, we lose the most probable Bell state because the probability of
the others begins to increase (figures 6(a)–(d)) due to the bath equilibration process, producing
a mixed state with concurrence approaching zero. Notice that oscillations presented in the
polarization after driver depolarization are smaller and even disappear because of damping
produced by the coupling to the thermal bath. In addition to temperature effects, we observe
that dot asymmetry causes the cell to almost completely ignore the driver, yielding a faster
decrease in concurrence (results not shown).

Finally, in figure 7 we present the asymptotic stationary behaviour (for times much longer
than ts) of concurrence as a function of temperature. We obtain an entangled state with large
concurrence for very low temperature T < T1 ≈ 1 K, but there is a fast decay as the temperature
increases in the range T1 < T < Tc due to dissipation effects. We find a critical temperature
for our typical parameters of TC = T/T1 ∼ 2.4, where the two DQD cell loses any capability
to generate entanglement (C = 0); this temperature can depend on the parameters of the DQD
cell such as tunnelling and imperfections. This behaviour is better understood if we realize
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Figure 6. Bell state probabilities obtained in the dissipative dynamics of the two DQD array, for
different temperatures (T1 ∼ 1 K, D2 = 0.05 and symmetric quantum dots).

Figure 7. Asymptotic behaviour (long times) of concurrence as a function of temperature for
dissipative case and symmetric cell.

that, for long times, the population in each QD tends to be equal because of the equilibration
process with the dissipative bath, producing a separable state with the concurrence tending to
zero. In such case, the density matrix is diagonal and the eigenvalues of ρSρ̃S are equal, so by
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definition (equation (9)), the concurrence is zero, meaning that entanglement does not extend
to the infinite temperature limit in agreement with treatment presented in [24].

In summary, we have studied the behaviour of polarization, concurrence and Bell state
probabilities based on the charge distribution of two mobile electrons in a square array of
two double coupled quantum dots. The quantum dynamical evolution of those properties
in response to a driver cell whose polarization changes linearly with time, shows a strong
dependence on the driver charge distribution, dot imperfections and temperature. Our results
show that we can obtain and control entangled states as well as a most probable |�+〉 Bell
state via the manipulation of the electrostatic interaction between the two DQD cell and the
driver cell. The optimal concurrence and probabilities values calculated can be maintained for
low bath temperatures, but are adversely affected by increasing values of temperature and dot
imperfection.

Clearly, our results show that it may not be possible to scale this system up to high
temperatures and/or to large number of devices; even so, the present theoretical electrostatic
mechanism for entanglement formation may be interesting for future experimental conditions
where the ability of manipulation of such entangled states could be feasible. Notice that for
very low temperatures (from T ∼ 1 K to T < 3 K) the probability for the |ψ+〉 state is
greater than 0.5, the purification threshold. This opens the theoretical possibility of using
some entanglement purification protocols [25] in order to manage mixed states induced by
decoherence effects and to produce a pure Bell state. The possible implementation of the two
main protocols proposed (IBM [26] and Oxford protocols [27] as well as improved versions
of them [28]) requires the use of at least another pair of double quantum dots (that is, a four
qubit configuration). The purification is based on the controlled manipulation of single qubit
rotations in each pair, classical communication and creation of four qubit correlation by means
of the manipulation of two qubits (each one belonging to different pairs), which is the most
difficult part of the protocol implementation [25]. This is an interesting problem that can be
studied in a future theoretical work. However, for higher temperatures the probability is less
than 0.5 and then we will not be able to use entanglement purification.

Furthermore, for the low-temperature regime, this quantum dot array could be used for
testing its applicability on a few quantum computation or quantum communication processes
where it should not be unreasonable to operate, in a controlled manner, at such temperatures
and with the degree of entanglement obtained.
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